Step of Proof: before_last
11,40
postcript
pdf
Inference at
*
2
1
4
I
of proof for Lemma
before
last
:
1.
T
: Type
2.
T
List
3.
u
:
T
4.
v
:
T
List
5.
x
:
T
. (
x
v
)
(
(
x
= last(
v
)))
x
before last(
v
)
v
6.
x
:
T
7. (
x
v
)
8.
(
x
= last([
u
/
v
]))
[
x
; last(
v
)]
v
latex
by ((((Fold `l_before` 0)
CollapseTHEN (BackThruSomeHyp))
)
CollapseTHEN (
C
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 4:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
(
x
= last(
v
))
C
.
Definitions
t
T
,
P
Q
,
x
:
A
.
B
(
x
)
,
x
before
y
l
origin